On nonhomeomorphic mappings with the inverse Poletsky inequality

نویسندگان

چکیده

The article investigates the local and boundary behavior of mappings with branching that satisfy inverse inequality Poletsky type. It is proved this type are logarithmically Hölder-continuous under condition function Q responsible for a distortion modulus families curves integrable. A continuous extension indicated to obtained. In addition, conditions which mentioned equicontinuous inside domain at its studied.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inverse Limits on Graphs and Montotone Mappings

In 1935, Knaster gave an example of an irreducible continuum (i.e. compact connected metric space) K which can be mapped onto an arc so that each point-preimage is an arc. The continuum K is chainable (or arc-like). In this paper it is shown that every one-dimensional continuum M is a continuous image, with arcs as point-preimages, of some one-dimensional continuum M . Moreover, if M is G-Iike,...

متن کامل

Learning Inverse Mappings with Adversarial Criterion

We propose a flipped-Adversarial AutoEncoder (F-AAE) that simultaneously trains a generative model G that maps an arbitrary latent code distribution to a data distribution and an encoder E that embodies an “inverse mapping” that encodes a data sample into a latent code vector. Unlike previous hybrid approaches that leverage adversarial training criterion in constructing autoencoders, F-AAE mini...

متن کامل

On the Simple Inverse Sampling with Replacement

In this paper we derive some unbiased estimators of the population mean under simple inverse sampling with replacement, using the class of Hansen-Hurwitz and Horvitz-Thompson type estimators and the post-stratification approach. We also compare the efficiency of resulting estimators together with Murthy's estimator. We show that in despite of general belief, the strategy consisting of inverse s...

متن کامل

Inverse Young inequality in quaternion matrices

Inverse Young inequality asserts that if $nu >1$, then $|zw|ge nu|z|^{frac{1}{nu}}+(1-nu)|w|^{frac{1}{1-nu}}$, for all complex numbers $z$ and $w$, and equality holds if and only if $|z|^{frac{1}{nu}}=|w|^{frac{1}{1-nu}}$. In this paper the complex representation of quaternion matrices is applied to establish the inverse Young inequality for matrices of quaternions. Moreover, a necessary and ...

متن کامل

Inverse Inequality Estimates with Symbolic Computation

In the convergence analysis of numerical methods for solving partial differential equations (such as finite element methods) one arrives at certain generalized eigenvalue problems, whose maximal eigenvalues need to be estimated as accurate as possible. We apply symbolic computation methods to the situation of square elements and are able to improve the previously known upper bound by a factor o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Sciences

سال: 2021

ISSN: ['1072-3374', '1573-8795']

DOI: https://doi.org/10.1007/s10958-020-05179-0